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From the great tendency of urea to form complexes with acids, bases 
and salts,1 it is possible that an ammonium-urea complex, having an 
ionization constants less than that of ammonium hydroxide was formed. 
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I. Introduction. 
The rate at which chemical reactions take place has long been one of 

the most important and most baffling of the problems of theoretical 
chemistry. The principles of thermodynamics provide a theoretical 
basis for predicting just which chemical reactions can take place, namely, 
those accompanied by an increase in entropy, and for predicting just how 
far they will proceed until equilibrium is attained. Thermodynamics, 
however, has been powerless to provide information as to the rate at which 
the therrnodynamically possible reactions will actually proceed. In
deed chemical reactions which are accompanied by very large increases 
in entropy, such, for example, as the union of hydrogen and oxygen to 
form water, are often the ones which proceed with the slowest rates, The 
final solution of the problems of chemical velocity will be of extraordinary 
importance both for theoretical and for applied chemistry, since the 
chemist will then be able to predict not only the possible reactions in a 
given mixture of chemicals, but also the actual reactions which really do 
take place. The present article aims to make some contribution towards 
this final solution. 

i . Previous Work.—Important contributions to the general theory of 
chemical velocity have been made by Guldberg and Waage,2 Arrhenius,3 

Marcelin,4 Trautz,8 Perrin6 and W. C. M. Lewis.7 

Guldberg and Waage were the first to understand the effect of concen
tration on rate of reaction. 

Considering the reaction 

aA + bB + . . . —> cC + dD + . . . (i) 
where a mols of the Substance A react with b mols of the Substance B, 
etc., to form the products C, D, etc., the equation of Guldberg and Waage, 

1 Meyer and Jacobson, "Lehrbuch der Organischen Chemie," I, Pt . 2 (1913). 
2 Guldberg and Waage, Ostwald's "Klassiker" No. 104; J. prakt. Chern., 19, 69 

(1879). 
3 Arrhenius, Z. physib. Chem., 4, 226 (1889). 
4 Marcelin, Ann. phys., 3, 120 (1915). 
3 Trautz, see summary, Z. anorg. Chem., 102, 81 (1918). 
6 Perrin, Ann. phys., 11, 5 (1919). 
» W. C. M. Lewis, J. Chem. Soc, 113, 471 (1918); Phil. Mag., 39, 26 (1920). 
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for the rate at which the concentration of the reactant A is decreasing 
may be written 

- ^ = h CId . . . (2) 

where CA, CB . . ., etc., are the instantaneous concentrations of the re
active substances at the time t and ki, the so-called specific reaction rate, 
is a constant, independent of the concentration, but dependent of course on 
temperature. Equation 2, which applies to single phase homogeneous 
systems, is a correct expression, provided the actual mechanism of the re
action is given by Equation 1 and provided the reacting substances are 
sufficiently dilute. The equation has a familiar and obvious derivation 
based on a consideration of the number of collisions between reacting 
molecules. 

Arrhenius investigated the relation between temperature and rate of 
reaction, and showed that the variation of specific reaction rate with the 
temperature could be satisfactorily expressed by the equation 

d In ki _ Ei /v 
"~dT~ ~" RT2 {3) 

where Ex is a quantity, having the dimensions of energy, which is found 
experimentally to vary only slightly with the temperature. 

Equation 3 has the same form as van't Hoff's well known thermody
namic equation for the relation between equilibrium constant and tem
perature, namely, 

d In K _ AE ,s 

where K is the (concentration) equilibrium constant and AE is the energy 
absorbed when the reaction takes place at constant volume and tempera
ture. 

The analogous forms of Equations 3 and 4 led Arrhenius to a partially 
satisfactory thermodynamic derivation of Equation 3. He postulated 
that chemical interaction does not take place between all molecules which 
collide in reacting proportions but only between molecules which are in 
a special activated state. These activated molecules are considered as 
a tautomeric form of the reacting substance existing at very small con
centration in equilibrium with the unactivated form. Since the rate of 
the reaction will depend on the concentrations of the activated mole
cules, Equation 3 can then be derived by combining the individual van't 
Hoff equations which control the concentrations of the activated sub
stances, ki is found to be proportional to the product of the equilibrium 
constants for the individual reactions by which the activated substances are 
formed, and .E1 the "energy of activation" is the sum of the heats of these 
reactions. 
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This treatment of Arrhenius is'only partially satisfactory. Like any 
thermodynamic treatment it is powerless to give information as to the 
internal mechanism of the processes involved and hence cannot ultimately 
compete with a statistical mechanical treatment. It also seems ques
tionable whether it is entirely justifiable to treat a portion of the mole
cules of a reactant namely, those having high energy content, as a "thermo-
dynamically" distinct substance. Furthermore, the Arrhenius discussion 
takes no cognizances of the important rdle played by radiation in furnish
ing the energy of activation. I t should also be noted that the idea of 
activated molecules which exist as a tautomeric form and react upon 
collision is apparently inapplicable to the important case of monoinolecu-
lar reactions. Finally, modifications would have to be introduced to 
take care of the increased frequency and violence of collision with in
creased temperature, as well as the change in effective time of contact 
of the molecules which are to react. 

Marcelin was the first to present any elaborate attempt to apply the 
methods of statistical mechanics to the problems of reaction velocity. 
His important contribution, however, is marred by a lack of apprecia
tion of the rdle of radiant energy in the activation of molecules and by a 
confusion of Gibbs' expression for the canonical distribution of an en
semble of systems with Maxwell's distribution law. 

Trautz, W. C. M. Lewis and Perrin, were the first to appreciate the im
portance of radiation as the source from which the energy of activation 
necessary for chemical reaction is to be obtained. The development of 
this idea has received its most complete expression in the very persuasive 
treatment of Perrin, "Matiere et Lumiere."1 A brief account of Perrin's 
work will be necessary to indicate the point of departure for the present 
article-

In order to express the mechanism of a chemical reaction by which the 
substances A are changed into the substances A', Perrin writes the equa
tion 

Hv + A = A' + Hv' (5) 

where v is the frequency of the light which has to be absorbed in 
order to activate A, v' is the frequency of the light which is g ven out by 
A' on formation, and H is Planck's constant h multiplied by Avogadro's 
number N. 

H = Nh. (6) 
It will be seen that Equation 5 takes cognizance of the quantum theory 

by making Hv the energy of activation per mol. of substance, and thus 
making the energy of activation per molecule exactly one quantum of 
energy hv. 

1 Loc. cit. 
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Equation 5 is regarded as reversible v' being the frequency of light ab
sorbed by A' when the reaction proceeds in the reverse direction. 

In accordance with Equation 5, Perrin writes for the total energy 
change accompanying the reaction 

AE = #(»» — / ) . (7) 
In order to investigate the rate of reaction and its dependence on tem

perature, Perrin assumes that the specific reaction rate k will be pro
portional to the intensity of radiant energy of the activating frequency v. 
In the case of a purely thermal reaction this will obviously be the inten
sity of radiation in a hohlraum at the temperature in question. If u is the 
density of energy in a hohlraum at temperature T we may write in ac
cordance with the Planck law for the distribution of radiant energy, 

Au _ &irhvs i , . 
dv JT" -^WTZr1- <• > 

On the basis of Planck's distribution law, Perrin then writes the following 
expression for specific reaction rate , 

s being a composite proport ionali ty factor which in agreement with Perrin 
may be called the "sensibility" of the substances A to the action of radia
tion of frequency v. 

Since the quant i ty e
hu'kT is in general very large compared with uni ty , 

Perrin rewrites Equat ion 9 in the form 

k, = sthvlkT (10) 

and indeed seems to feel that Equation 10 is presuniabhy the exact form 
of the equation. 

Taking the logarithm of Equation 10 and differentiating with respect 
to the temperature we obtain 

or since Nk — R and 

. d In ki 
dT 

Jh = H, 

d In ki 
dT 

hv 
kT* 

Hv 
RT*' 

( 1 1 ) 

(no) 

We have thus derived Arrhenius' equation (3), Hv being the energy 
of activation previously called Ei. 

2, Criticism of Perrin's Treatment.—Perrin's treatment is not en
tirely satisfactory for the following reasons. 

(1) Equation 7 for the energy change accompanying a reaction would 
make the energy of reaction entirely independent of the temperature. This 
is known not to be the case. 

(2) Perrin's treatment is based on the assumption that light of a single 
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frequency or rather of a very narrow range of frequencies will be the only 
light having activating properties. We have, however, very considerable 
evidence to show that photochemical reactions are produced by the action 
of light of a considerable range of frequencies. The simplest of all chem
ical reactions is the dissociation of a substance into positive ions and elec
trons, and it is well known that the photo-electric effect in metals is pro
duced by a range of frequencies above the limiting threshhold frequency. 
This is not only true for solid metals, but I am informed by Dr. B. H. 
Williams that it was also found by Kunz and himself to be true for cesium 
vapor. The well known reactions of practical photography are also 
known to be produced by light of a great variety of wave lengths. Work 
carried on in this laboratory by Dr. Farrington Daniels1 has also shown 
that the photo-chemical decomposition of gaseous nitrogen pentoxide is 
apparently produced by a range of frequencies. It is evident that a 
more general method of treatment involving integration over the whole 
range of frequencies is to be desired. Perrin's treatment, even if in other 
ways correct, would then be the limiting case of a more general theory, 
applicable when only a spectrum "line" is active. In this connection it 
should be pointed out that Perrin's 5 in Equation 9 must be thought of 
as containing a factor Av, corresponding to the width of the supposed 
"line," since Equation 8 gives, not energy density, but change of energy 
density with frequenc);-. 

(3) Perrin's assumption that specific reaction rate is really exactly pro

portional to i~hv/kT instead of to -j-rrf as would be expected from 

Planck's radiation formula, seems arbitrary. 
(4) Perrin's treatment makes no allowance for the. fact that the differ

ent molecules of a reacting substance are undoubtedly in many different 
internal states. Hence, the rate of reaction and its change with tempera
ture must be thought of as depending on the condition of the molecules 
as well as on the condition of the surrounding "bath" of radiant energy. 

(5) Perrin's treatment does not. make what seems to be a necessary 
differentiation between monomolecular and polymolecular reactions. In 
the case of monomolecular reactions, we may think of the reaction as being 
completed as soon as the molecule has received its energy of activation 
In the case, however, of di- and polymolecular reactions, we shall find it ad
vantageous to consider as 2 separate steps, (a) the process by which the 
proper quota of activated molecules is maintained, and (6) the actual 
chemical interaction. This latter viewpoint has as a matter of fact 
been appreciated both by Trautz and W. C. M. Tewis.2 

1 To be published in a later number of T H I S JOURNAL. 
1 Since this article was written a further criticism of Perrin's development has 

been made by Langmuir, ibid., 42, 2190 (1920). Langmuir points out (1) that 
many substances do not have absorption bands for radiant energy of the fre-



STATISTICAL MECHANICS, STC. 2 5 0 

II. Method of Treatment Adopted in this Article. 

The point of view adopted in the present article is essentially an exten
sion of that of Perrin, the attempt being made to meet the 5 criticisms 
made above. The method of treatment, however, will differ from that of 
Perrin in being based as nearly as may be on the fundamental considera
tions of statistical mechanics. 

Since many chemists are not familiar with the methods of statistical 
mechanics we shall first present a brief introduction to this important 
science. 

All developments of statistical mechanics which have as yet reached 
any degree of elaboration have been based on the assumption that Hamil
ton's equation of motion are applicable to the different parts of the sys
tem under consideration, and this assumption will be made in the present 
treatment. In recent years many investigators have objected to such a 
use of Hamilton's equations of motion, since they have believed that a 
statistical mechanics founded on these equations necessarily led to the 
principle of the equipartition of energy which has been shown not to be 
true for the radiant energy in a hohlraum, and for other systems where 
"quantum" relations have been found important. The present writer, 
however, does not believe that the principle of the equipartition of energy 
is a necessary consequence of Hamilton's equations, but rather a conse
quence of an unnecessary and incorrect assumption that energy is neces
sarily a homogeneous quadratic function of the generalized coSrdinates 
and momenta. This point of view has already been presented by the 
author1 in an article dealing with the general theory of energy partition, 
where it has been shown that a relation between energy and the general
ized coordinates and momenta can be found which will even account for 
the distribution of energy in the hohlraum in accordance with the Planck 
radiation formula. For this reason we shall feel justified in using a statis
tical mechanics based on Hamilton's equations for the present investiga
tion. 

Before proceeding to our development, a word must be said about the 
rdle of radiant energy in the production of chemical reaction. In this 
connection, it is believed that Perrin's arguments that radiant energy 
is necessary for chemical reaction are unescapable. If we agree to the 

quency which Perrin predicts as necessary for their activation, and (2) that the amount 
of radiant energy of such frequencies which is actually available in the hohlraum is 
too small to furnish the necessary energy of activation. The present writer agrees 
with both these criticisms of Perrin's treatment. He is not inclined a t the present, 
however, to give up, as Langmuir suggests, the whole radiation theory of reaction 
velocity. As will be evident in the sequel, the present development, by assuming the 
possibility of a widely extended range of activating frequencies, meets the objections of 
Langmuir as well as the 5 objections noted above. 

1 Tolman, Phys. Rev., 11, 261 (1918). 
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general idea, as presented, indeed in the simple Arrhenius treatment, that 
reaction occurs only between activated molecules, we find experimentally 
from the temperature coefficient of rate of reaction (see Equation 3) 
that the energy necessary is usually very large, much larger than ordinary 
heats of reaction. In order to maintain a steady rate of reaction, the 
molecules of the reacting substances will have then to obtain in some 
continuous way this necessary energy of activation. I t can come either 
from collision with other molecules or from the surrounding bath of radiant 
energy. If the only source of energy were collisional we should expect a 
decrease in specific reaction rate on increased dilution which is not found 
to be the case. We may conclude that radiant energy is an important 
source for the energy of activation and the only source for reactions in 
gases of high dilution. 

III. Statistical Mechanics Applied to Chemistry. 
i . The Equations of Motion.—Consider a chemical system such as 

a gaseous mixture of reacting molecules immersed in a bath of radiant 
energy of a character corresponding to the temperature. The configura
tion of the system at any instant will be determined by the specification 
of the position of the different molecules, the orientation of the atoms com
posing them, and the electromagnetic displacement in the different modes 
of vibration which are the seat of the radiant energy. If a statement of 
the values of n generalized coordinates, 4>i<t>2<j>i . . . $„ is just sufficient to 
specify the configuration, the system is said to have n degrees of freedom. 

The future behavior of the system will be determined by the instan
taneous values of these n generalized coordinates and by the instantaneous 

values of the corresponding n generalized velocities <j>i <£2 4>% • • • • <$>n> 
the dot being used in general to indicate differentiation with respect to 
time. If the system is a conservative one, the equations of motion can 
be written in the remarkably symmetrical Hamiltonian form 

an • &ff : ^E = l 
2><h <>fa 3& ' / N 
SH ; SH ; bH 

o0i o& Od)3 

where the new quantities, \pi ^2 ^3 • • • 4*n> a r e known as the generalized 

momenta for the system and are themselves functions of the 4>'s and <j>'$, 
and H, the so-called Hamiltonian function, is the energy of the system E 
expressed as a function of the generalized coordinates and momenta. 

H = E {4>i 4>2 • • • 4>n f i h • • • ^ n ) - (14) 
2. Geometrical Representation.—The state of our system at any in

stant will be completely determined by the specification of the 2» varia
bles, <pi <j>2 . . , <pn fi 4*2 • • • fn- We shall find it convenient to think of 
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the state of the system as represented by the position of a point in a 211 
dimensional space. 

Suppose now we have a great many systems of the same structure but 
differing in state. Then for each system we shall have a point in our 
2» dimensional space, and if the systems are left to themselves these points 
will describe stream lines in accordance with the equations of motion (13). 

3. The Maintenance of Uniform Density.—Suppose now that the 
points representing the states of the different systems are originally dis
tributed with the uniform density p throughout the 211 dimensional space. 
Then it is a necessary consequence of the equations of motion that the 
density will remain uniform. For the rate at which the density would 
increase at any point we can obviously write 

di \d0i d<fe ' ' " ctyi d^2 
and since the equations of motion (13) evidently necessitate the relations 

-_~j -4~ -J— ss 0 -~— ~r ™ 0 e t c 

we conclude that the original uniform density will not change. 
This maintenance of uniform density is a very important result. I t 

means that there is no tendency for the representative points to crowd 
into any particular portion of the 2n dimensional space. For this reason 
if we start some one isolated system going and plot its state in our 2% 
dimensional space, we shall assume that after an indefinite lapse of time 
its representative point is equally liable to be in any one of the infinitesimal 
elements of equal volume (dcfn dfa . -. d<j>n d^i d\pz • • • d\pn) into which we 
can divide our space, provided this elementary region corresponds to the 
energy content of the system. 

4. Probability of a Given Microscopic State.—As a convenient no
menclature, we shall say that the microscopic state of a system is specified 
by a statement of the particular element of volume (d#i d<fe • • • d<t>n d^i 
dijJ»2 . . . dipn) in which the representative point for the system falls. On 
the basis of the conclusion reached in the last paragraph we shall state the 
important principle that all the different microscopic states of a system have 
the same probability. 

5. Probability of a Given Statistical State.—Let us suppose that our 
system is. a chemical one composed of a large number of identical elements 
such as atoms, molecules, modes of electromagnetic vibration, etc. Let 
A, B, C, etc., be the number of elements of each of the various kinds which 
go to make up the complete system, and let us consider that our 2» gen
eralized coordinates and momenta can be assigned to the individual ele
ments of the system. 
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For a chemical system of this kind, we shall be particularly interested 
in the number of elements of any particular kind A which have coordinates 
and momenta falling in any given infinitesimal range, 

d<rA = d<j!>Al d(£A2 . . . d^Al d^A2 . . . (15) 

where <f>Al, <£Aa . . . ^Al ^A. • • • a r e generalized co5rdinates and momenta 
of the kind that are assigned to one of the elements of the kind A. We 
shall specify the statistical state of our system by stating the number of 
elements of the various kinds A, B, C, etc., which fall in the different possi
ble infinitesimal ranges Aa. 

A specification of the microscopic stale of the system determines the co
ordinates and momenta for each individual element of which the system 
is composed. The statistical state merely determines the number of ele
ments of each of the different kinds which have coordinates and momenta 
of a particular magnitude, without attempting to make any distinction 
as to which particular elements are taken to supply the quota. We 
thus see. that corresponding to a given statistical state there will be a large 
number of different microscopic states which can be obtained by the inter-
transposition of elements of a given kind from one region do- to another 
without disturbing the total number in each region. Since we have al
ready concluded that all microscopic states are equally probable, we may 
now conclude that the probability of any given statistical state is propor
tional to the number of microscopic states to which it corresponds. 

Let us specify a given statistical state by stating that AiA2A3 . . . BiB2B3 

. . .C1C2C3 . . . , etc., are the number of elements of each of the kinds 
which have coordinates and momenta falling in the particular infinitesimal 
ranges Nos. iA, 2A, 3A. . . , iB, 2B, 3B, . . . etc. 

Then it is evident from the principles of permutation that the num
ber of microscopic states corresponding to this statistical state will be 

IA IB IC 

IA1IA2IA3 ... (B1 JB2 | B 3 . . . IC 1 19J9~~. l ) 

where A, B, C, etc., are the total number of elements of each of the kinds. 
We shall call W the probability of the given statistical state, without in
troducing any proportionality factor. 

I,et us now assume that each of the numbers A Ai A2 . . . B Bi B2 . . . , 
etc., is large enough so that we may apply Stirling formula for factorial JV, 

\N = V^rA/W/e)^. (17) 
Substituting in Equation 16, taking the logarithm of W for greater con
venience and omitting negligible terms, we obtain 

log W = A log A + B log B + C log C + . . . 
— Ai log Ai — A2 log A2 — A8 log A8 — ... , N 
— Bi log Bi — B 8 log B2 — B3 log B 8 — ... { J 

— Ci log Ci, — etc. 
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which can be rewritten in the form 

log W = A log A + B log B + C log C + . . . , ' 
— SA4- log A,- — SB,- log B,- — SC* log C* — . . . U a) 

where the summation S is to be taken over all the infinitesimal regions, 
t = i , 2, 3, . . . 7' = i , 2, 3 . . . & = i , 2 , 3 . . . etc. 

6. Statistical State of Maximum Probability.—We shall be specially 
interested in the statistical state of maximum probability with a system 
having a given energy content. The condition for maximum probability 
will evidently be 

S log W = —S(log A< + I)SA,- — S(log B,- + I)SB,- — . . . = 0 (19) 

The variation 5 however cannot be carried out entirely arbitrarily since 
the total number of elements of any kind A, B, C, etc., will not be taken 
as subject to variation, and the total energy of the system will be taken 
as constant. 

For the total number of elements of each kind we may write 

A = SA^ B = SB,- C = 2C&, etc., 

and since these totals are not to vary we obtain 

SSA8- = 0, SSB,- = 0, SSC& = 0, etc. (20) 

For the total energy of the system we may write,1 

E = HAiEt + SB,-E,- + HCkEk + ... 
where Ef is the energy of an element of kind A in the t'th region, etc. 
Since the total energy is to remain constant during the variation, we ob
tain 

SE = HEiSAi + HEjSBj + HEkSCk + . . . = 0. (21) 

The simultaneous Equations 19, 20 and 21 may be combined by the 
method of undetermined multipliers giving us 

S(log A,- + i + XA + ^)SA4 

+ S(log B,- + i + XB + IxEj)SBj (22) 
+ S(log C» + . . etc. = 0 

where the quantities XA XB . . . and \x are undetermined multipliers. The 
introduction of these undetermined multipliers now makes the variations 
SA8-, etc., entirely arbitrary, so that Equation 22 may be solved in the 
form 

log Aj + i + XA + pEi = 0 
log B, + i + XB + fiEj = 0 (23) 
log Ck +, etc. 

These relations may be rewritten in the form 
1 We introduce at this point the tacit assumption that no error will be introduced 

in to the discussion, if we take the energy of an element as independent of the state of 
other elements of the sytsem. 



25)6 RICHARD C. TOLMAN. 

A, = aA6~"£ ' 
Bj = aBt-^ (23a) 

etc. 
where aA, aB, etc., correspond to the original undetermined multipliers, 
AA, XB, etc., and e is the base of the natural system of logarithms. It should 
be specially noticed that «A, aB, etc., are dependent on the kind of ele
ment in question, but that the quantity /x occurring in Equations 23 and 
23a is the same for elements of any kind. 

7. Introduction of a Continuous Variable.—Let us now express the 
information contained in Equations 230 in a slightly different form. The 
quantity A,- occurring in Equations 23a is the number of elements of the 
kind A in the i'tb. region da-* = (d$Ald<£A2 . . . d^A,dt/<A2 . . . ) when we have 
the distribution of maximum probability, and this quantity A,- is as we 
see determined solely by the kind of element involved and the energy of an 
element in the i'th region. Now Aj/A will be the chance that an element 
of kind A will be in the i'th. infinitesimal region when we have the distri
bution of greatest probability, let us write A,-/A proportional to the vol
ume of the infinitesimal region, we have 

_ = ro.Q(r. 

where w{ is the chance per unit generalized volume that an element of 
kind A will have coordinates and momenta of the specified magnitude. 
Wf will evidently depend as does A,- solely on the kind of element involved 
and on the energy of an element in the particular region d<r involved. It 
is evident from Equation 23a that we can then write as an expression for 
the chance that the coordinates and momenta of an element will fall in a 
particular infinitesimal region da, 

wAd<rA = aAe-"E^dcrA, 
wBdaB = aBe~*BBdaB, 

etc. 

where the quantities aA, aB, etc., correspond to the original undetermined 
multipliers, XA, ^ B . etc-> and hence depend on the kind of element in
volved and where n is the same for all kinds of elements. 

Now it is well known that for a perfect monatomic gas /x has the value 
i/kT where T is the absolute temperature and k is the gas constant R 
divided by Avogadro's number N, for the number of molecules in a gram 
molecule. Since part of our system could always be a dilute indifferent 
monatomic gas without influencing any phenomena, we may write in 
general as our final expressions for the chance that an element of a given 
kind will have coordinates and momenta falling in a given infinitesimal 
region, 
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wAdaA = aAe-EA/kT daA = aAe~EA/*r d<£Ald<£Aa . . . d^Ald^A2 . . . 
«iBd<rB = aBe-B B /* r dcrB - a^~E*/kT d f e d f e . . . d^B ldfe . . . 
iv0clac = etc. (24) 

Or, in general, 

wdff = ae-E/kT da = at~E/kT dfrdfc • • • dMfa • • • 
This may be called the generalized Maxwell's distribution law. 

8. Three Fundamental Equations of Statistical Mechanics.—Since 
the probability that a given element has some value for its generalized 
coordinates is unity we may write 

£ aCE/kTda = £ . . . £ arB/kT dfadfa . . . d&dfc . . . = i (25) 
where the symbol £ indicates that the integration is to be carried out over 
the whole region of the generalized space involved. This equation may 
be regarded as determining the quantity a, which is seen to be a function 
of the temperature. 

Since ae~ E/kTda is the chance that an element will be found in the region 
da it is evident that the average value of any property P of the elements 
will be given by the equation 

P = faCElhT PAa=S... fae~E/kT Pdfrdfc . . . dfcdfc • • • (26) 
where P is to be regarded as a function of the coordinates and momenta 
and where the integration is to be taken over the whole or a part of the 
generalized space, according as the average of P is desired for all or a 
part of the elements. 

Equations 25 and 26 will permit us to obtain important information 
as to the multiplier a. If we differentiate Equation 25 with respect to 
the temperature T we obtain 

fda/dT e~E/kT da + £a<-~E/kT E/kT* da = 0. 
Dividing the first term of this equation by £ae~E^kT der = 1, and noting 
that the second term in accordance with Equation 26 is the average value 
of E/kT2 for all the elements of the kind in question we obtain 

fda/dT e~E/kT da __ E_ , , 

£ae~E/kT da ' kT* W) 

or 
din a _ E 
~~dT ~~ kT2 

where we have used the symbol E to indicate the average value of E. We 
shall find later use for this important equation. 

IV. Application of Statistical Mechanics to Rate of Chemical Reaction. 
I t is evident that statistical mechanics is a much more powerful, al

though more complicated, tool for the treatment of chemical problems 
than is thermodynamics. It is more powerful because it is based on a 
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consideration of the behavior of the ultimate elements of which the system 
is composed. 

i . Nature of Systems to be Considered.—In the present article we 
shall apply statistical mechanics to a consideration of the rate of chemical 
reaction in gaseous systems, and shall make a number of restrictions as 
to the nature of these systems. 

(a) In the first place, we shall assume that the reactions which we con
sider do not proceed with explosive violence, but at a slow and measurable 
rate. We shall assume this rate slow enough, so that we can assume that 
the elements of our system at any instant of time are in the statistical 
state of maximum probability. The instantaneous rate of chemical re
action will then be determined by the characteristics of this particular 
statistical state concerning which we have already obtained important 
information. 

(6) We shall further assume for the sake of simplicity that the reac
tions which we are considering consist of a single molecular change of 
the general type 

ah + MB •—> Products. 
In practice, there are of course many reactions which take place in steps, 
with the formation of intermediate compounds which later react again, 
or with the formation of temporary compounds with some substance 
which acts as a catalyst. Since, however, the total process can be thought 
of as analyzed into a series of simple steps of the above type we shall con
fine our immediate theoretical treatment to a consideration of single 
molecular changes. 

(c) We shall assume our gaseous mixtures dilute enough so that the 
gas laws hold for each of the reactants and each of the products of the re
action, and dilute enough so that the specific reaction rate for the forward 
reaction ki and for the reverse reaction k% are independent of concentra
tion. This assumption that the gases are dilute entails several important 
consequencies. 

Since the gases are dilute enough to obey the perfect gas laws, van't 
Hoff's equation for the equilibrium constant will be. exactly true, namely, 

d In K __ AE . . 
~"dT~" ~ RT* [ ' 

where K is the (concentration) equilibrium constant, AE, is the energy 
change accompanying the reaction at constant temperature and volume 
and R and T have their customary significance. 

As a further consequence of the dilution we shall have as an exact re
lation, 

K - ki/kt, (29) 
and hence our theory of rate of reaction must lead exactly to the relation. 
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d In ki din kz _ AE - N 

~W~ ~~ ~dT Wr {3°J 

As a final consequence of the dilution assumed, we are led to the conclu
sion that radiant energy takes a necessary part in the mechanism of the 
chemical change. If reactions take place only between "activated" 
molecules which have considerably more energy than the average, it is 
evident that in order to maintain a steady rate of chemical change, there 
must be some source from which molecules may receive the necessary 
"energy of activation." The source of the "energy of activation" must 
either be molecular collision or the bath of radiant energy in which the 
molecules are immersed. If our gases are assumed dilute enough so that 
further dilution leads to no change in the specific reaction rate, we must 
conclude, since dilution decreases the number of molecular collisions, that 
radiant energy is the source of the energy of activation and hence takes 
an essential part in the chemical change. 

2. Thermal Rate of a Monomolecular Reaction.—Let us first-con
sider monomolecular reactions, which might consist either in a decomposi
tion of the molecules or in the formation of an isomer. The decomposi
tion of nitrogen pentoxide, which has been studied in this laboratory by 
Daniels, is the most satisfactory example of a gaseous monomolecular 
reaction. 

In the case of monomolecular reactions, we may conceive of the reaction 
taking place as soon as the molecule has received its energy of activation. 
This differs from the case of di-, and poly-molecular reactions, where we 
shall expect cases in which the molecules exist for an appreciable length 
of time in the activated state and then react upon collision. 

The chance that a molecule will react, i. e., will pick up the necessary 
energy of activation from its bath of radiant energy, will be determined 
in the first place by the state of the molecule itself, and this means of 
course by the values of the generalized coordinates and momenta which 
describe the condition of the molecule. If CA is the number of molecules 
in unit volume of the reacting gas, then by Equation 24, 

A/ = Chahe~Ei/kTdai, (31) 

is the number of molecules whose co5rdinates and momenta fall in the small 
region dcr,-, provided we assume that the molecules are distributed in the 
statistical state of maximum probability. This latter assumption cannot 
of course, be exactly true, since some of the regions daA correspond to an 
activated condition of the molecule and hence one which immediately 
leads to a destructon of the molecule. Since, however, we shall find that 
the energy Et is very large for activated molecules, the number of such 
molecules, even without reaction, would be negligibly small. As to the 
re-establishment of the statistical state of maximum probability, as mole-
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cules are removed by reaction, we have already assumed the reaction 
slow enough to permit of this adjustment. 

The chance that a molecule will take up the necessary energy of activa
tion will depend not only on the condition of the molecule but also on the 
condition of the surrounding bath of radiant energy. If the electromag
netic disturbances in a hohlraum be analyzed into periodic disturbances 
by the methods of Fourier's series, it can be shown that the number of 
modes of vibration per unit volume having a frequency between v and 
v + dv is equal to 

N = —— dv (32) 

where c is the velocity of light. The complicated derivation of Equation 
32 need not detain us here. I t is sufficient to note that except for the 
magnitude of the factor ST, Equation 32 is a necessary consequence of 
the "theory of dimensional homogeneity, since N must have the dimen
sions of a number per unit volume. 

The electromagnetic condition in which a given mode of vibration finds 
itself will be determined by a specification that certain generalized co
ordinates and momenta fall in a particular infinitesimal region d<rk, If 
we have the statistical state of maximum probability the number of modes 
of vibration per unit volume having frequencies in the range dvj and co
ordinates and momenta in the region d<rr will be in accordance with 
Equations 24 and 32, 

v 
&1TV 

dvja^~E^kT dak. (33) •jk = UVf 
C3 

Let ŝ -fc be the chance per unit time that a molecule in state do-,- will 
undergo its monomolecular chemical change when it is surrounded by 
unit density of modes of electromagnetic vibration in state dak. Then 
for the total number of molecules which react in unit time, we may write 
in accordance with Equations 31 and 33, 

- ^ - ZsijkCAaA fW* Av1 * £ dvPv e ~ W Ar4, (34) 
dt C8 

where the summation S is to be carried out for all frequencies and for all 
possible regions i and k. Dividing through by CA and replacing the sum
mation by the integration form, we obtain 

- ~ ~ == *• = fff«* ^EA/kT ^a^E>/kT <Wd*k, (35) 
CA dt c3 

as an expression for the specific rate ki of our reaction. 
In order to have a complete understanding of the significance of Equa

tion 35 we may note that <rA, v, <sv and T are to be regarded as independent 
variables. The other quantities on the right hand side of Equation 35 
are functionally dependent on these variables as follows: 
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5 = s(ffA, v, (T,,)1 

«A = 0,k{J) 
Ek == EA(<rA) (36) 

a„ = a„(V, T) 
E„ = E,M 

A complete knowledge of these functional relations would permit an 
exact prediction of the specific reaction rate, and this must be regarded 
as an ultimate problem of chemical kinetics. 

In the meantime, we can get important further information from 
Equation 35 without any knowledge of these functional relations. 

3. Temperature Coefficient for Monomolecular Reaction Rate.—If 
we differentiate Equation 35 with the temperature, we shall obtain a 
derivation of the Arrhenius expression for the temperature coefficient of 
specific reaction rate, which will give a real insight into the meaning of 
that equation. Differentiating Equation 35, dividing by ki, and noting 
in accordance with Equation 27 that 

daA = d hi aA __ E^ 

df ~ GA "liT °A kT* 
dav _ d In a„ _ E11 

we obtain 

i dfei d In ki i „ „ „ EA -E^/kT 87.^2 -EJUT 1 -, j 
= = fff — ^SaAe LA/ — a,e "</eJ daAdvdar 

h AT d f ki kf2 c3 

+ ^ <fff ^SaAe-^T^fa^^'UaAd^ 

ki Rl1 'C° 

+ - fff kisa^EA/kT8^^rE^d,Advdar, 
Rl kT2 C! 

Examining this equation in the light of Equation 35 itself, it will be 
found that each of the terms on the right hand side is the average value 
of some property of the molecules or of the modes of vibration that enter 
into the reaction, we obtain 

d In k% EA — EA + ER — ER (38) 
dr kT* 

where EA is the average energy of the molecules which actually enter into 
the reaction, EA is the average energy of all the molecules of this kind in 
the system, ER is the average radiant energy of the modes of vibration 

1 Since crj must vary when v varies, the introduction of v into this equation is not 
essential, although informing. 
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upon participation in the reaction, and ER is the average radiant energy of 
such modes of vibration whether or not they are in a reactive condition. 

Equation 38 may be written in the form 

Z-_J_} = activated ~ ̂ average _, _£̂ £_ (-Ci) 
AT RT2 " RT2 K6}> 

where Eaotivated is the energy entering into the decomposition of one 
mol of molecules through their interaction with one "mol" of modes of 
vibration. -Eaverage is the average energy of these elements, and their 
difference is En which may be called the critical increment. 

In obtaining Equation 39 we have completed our derivation of the 
Arrhenius expression for the temperature coefficient of reaction velocity, 
for the special case of monomolecular reactions. It should be noted 
that the quantity Ec. is one which will not vary much with the tempera
ture, since neither the energy of the activated molecules and modes of 
vibration, nor their average energy will change rapidly with the tempera
ture. This approximate constancy of E6 agrees with the experimental 
facts, as determined for example, by Daniels, for the monomolecular 
decomposition of nitrogen pentoxide. 

4. Photochemical Rate of a Monomolecular Reaction.—In the fore
going development we have regarded a thermal monomolecular reaction 
essentially as a photochemical reaction, in which the activating light has 
its energy distributed among the different frequencies in accordance with 
the normal distribution in a hohlraum which has come to thermal equi
librium. By a photochemical reaction in the narrower sense we mean one 
in which we have monochromatic illumination. Our method of treat
ment will permit us to obtain important information as to the effect of 
monochromatic light. 

Returning to Equation 35, we have as an expression for the thermal 
specific reaction rate, 

h = fff saA e^/kT ^f av e ~ W dffA<ivd^ (3s) 

It. is evident that for the part of the reaction which is due to frequencies 
between v and v + d^ we may write the reaction rate 

k* = 8 I ^ ! dv ff saA rEA/hT av t~
E»/kT dffAd<v (40) 

Furthermore, in accordance with measurements which have been made 
on black body radiation, we may write for the density of radiant energy 
having frequencies between v and v + Av, 

Au = d„. (4I) 

If then we assume, in accordance with the available experimental data, 
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that the rate of a photochemical reaction is proportional to the intensity 
of illumination, we may divide Equation 40 by Equation 41 and write 
as an expression for photochemical specific reaction rate 

hv IhT 

k, = '—^=-1 ffSaA e'B^T a ^ k T daAdav. (42) 
hv 

This expression is important, since kv is a quantity which can be deter
mined experimentally by measuring the rate of reaction under a known 
intensity of illumination with monochromatic light of frequency v. Hav
ing determined the value of kv over the complete range of active frequen
cies we may then predict the thermal reaction rate, by a process of inte
gration. This will afford a valuable check of the soundness of the theory. 

We have from Equations 42 and 35 
ITJ''' ItV 

f kpdv = kx. (43) 
rt 

Hence the value of h\ can be predicted from a complete knowledge of kr. 
It is hoped that quantitative photochemical experiments will be made on 
the decomposition of N2O5 suitable for testing Equation 43. 

If there were only one narrow range of activating frequencies as as
sumed by Perrin, then it would be possible to carry out the. inverse process 
of predicting k„ from ki, but in general this does not seem to be true. In 
the case of the decomposition of nitrogen pentoxide, Daniels predicts, on 
the basis of Perrin's theory, that light of wave length 1150/*/* should be 
photochemically active, but finds experimentally that this is not the 
case. 

5. Temperature Coefficient for Monomolecular Photochemical Reac
tion Rate.—By the. temperature coefficient of a photochemical reaction, 
we shall understand the change in rate produced when the temperature 
of the gas is raised but the nature of the monochromatic illumination 
is kept constant. Referring again to Equation 42, we have for the re
action rate under the influence of monochromatic illumination of fre
quency v and unit energy density 

JwIhT ___ ' 
kv = e — _ — - 1 ff saKz-EJkT a,e-E>/kT d<xAd<v (42) 

hv 
If we raise the temperature of the gas, but hold our artificially produced 
illumination constant, we shall vary the quantity aAe~E^hT dctA, which 
determines the distribution of the molecules in the different regions daA, 
but shall leave, the other quantities unaffected. We may thus obtain 

I Q-K1, I € I « * d m dp. ~F«/hT ~F IhT i i 

— _J: = __ __„ ff ^ saA« fiA/fti ave ^1*1 d<rAdo-„ 
kr dl kv hv al 

+ ± < L ^ Z L i ffF^saAe^RTa,^RT d,Ad^ 
k, hv kd2 
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Applying the same considerations and symbols used in connection with 
Equation 38, we obtain as an expression for the temperature coefficient 
of a monomolecular photochemical reaction, 

AWk11 "EA — EA . , 
~dT = — m r - . (44) 

In other words, the temperature coefficient of the photochemical reaction 
rate is proportional to the difference between the energy of the molecules 
which actually react and the average energy of all the molecules of that 
kind. It will be remembered that the temperature coefficient of the 
thermal reaction rate was proportional to the energy of the molecules and 
modes of vibration that entered into the reaction minus the average 
energy of these molecules and modes of vibration. Hence it does not 
surprise us to learn experimentally that photochemical reactions actually 
have in general a small temperature coefficient compared with thermal 
reactions. We conclude that the ability of the molecules of a substance 
to take up radiant energy is on the average but slightly affected by rise in 
temperature. 

As far as the author knows, this is the first theoretical treatment of the 
temperature coefficient of photochemical reactions. 

6, Di- and Poly-molecular Reactions.—Our considerations up to this 
point have concerned themselves strictly with the monomolecular reac
tions of dilute gases, although the extension to more complicated reac
tions and even to non-gaseous systems will in many cases be obvious. 

The case of polymolecular reactions in dilute gases is somewhat 
different from that of monomolecular reactions. We may distinguish 
two steps in the process; first, the actual interaction of the molecules, 
which will at least in many reactions occur only between specially "acti
vated" molecules containing more than the average amount of internal 
energy, and second, the continuous re-establishment of the statistical 
state of maximum probability for the remaining molecules as those of 
high internal energy'are removed by the progress of the reaction. 

In the case of dilute enough gases, since the number of molecular colli
sions can be made as small as desired by increasing dilution, it is evident 
that the maintenance of statistical equlibrium for the molecules of the 
reactants will be mainly the business of the bath of radiant energy in 
which they are immersed. The interaction between molecules which 
come into contact may conceivably take place either with or without the 
intervention of radiant energy. 

Consider our expression for the mechanism of a chemical reaction, 
cA + 6B . . . —> cC + dB + . . . (1) 

To make our considerations as general as possible let us assume that this 
reaction may take place with the interaction of radiant energy simul-
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taneously from any number of modes of vibration of any frequency. 
Employing the same considerations that led to Equation 34, it will be 
found that we may write for the rate of reaction 

• = ^ = 2{smmn ... X CAaArE'/kT dcr, X CAaAe~EJ/kT d*j .. . 

X CBaB e~E*/kT dak X CBa3 ^/kT der, . . . X . . . (45) 

X lLvl dVmau e~
En^ dffn x 8 ^ 2

 d j , o 0 v £ -V*rda p . . . } . 
C3 C3 

CKJ CB. etc., are the instantaneous concentrations of the reacting sub
stances. The product of the factors of the type CAaAe~E/kTd<r is continued 
a times where a is the number of molecules of kind A that enter into the 
reaction; similarly there are b factors for molecules of Type B, etc. There 

Q „2 

are as many factors of the type —— da„t~E>'/kT d<r„ as are necessary to take 

care of the fact that quantities of radiant energy of more than one fre
quency might be drawn simultaneously into the reaction. sykimn . . . 
is the chance per unit time that the indicated chemical change will occur 
when there is one molecule of the Type A in region do-,-, one of Type A in 
region dor,-, etc., similar considerations applying to molecules of Type B, 
etc., and to the modes of vibration of different frequencies. The summa
tion is to be considered as taken for all possible regions i j k I m n . . ., for 
which Sijkimn • • • has an appreciable value. Cases in which no 
radiant energy enters into the reaction will, of course, be included if they 
exist. Their existence is improbable in the case of monomolecular reac
tions. In the case of many polymolecular reactions the interaction of 
radiant energy may be entirely unnecessary for the actual chemical 
change, although the interplay of radiant energy is necessary as we have 
already shown for the maintenance of the statistical state of maximum 
probability. 

Equation 45 may be rewritten in the integral form 

i dCA 'A fci= f • • • fs(aAe-E-/kT dcrA)a 

(aBe~E°/kT d<rB-)6 . . . ( ^ dva^/kTdav) (46) 

Ca
ACB dT 

where the meaning of the symbolism is evident. It should be noticed 
that our earlier Equation 35 for specific reaction rate is merely a special 
example of Equation 46 for the particular case of a monomolecular reac
tion taking place with the inter-action of radiant energy from a single 
mode of vibration. 

By differentiating Equation 46 with respect to the temperature, we may 
obtain in the same way that we derived Equation 39, a general expression 
for the temperature coefficient of specific reaction rate, 
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U OT Kj __ -^activated -^average _ Ec 
(47) 

dT RT* RT* 

where £activated is the actual energy of the molecules and modes of 
vibration which enter into the reaction of a mols of A with b mols of B, 
etc., and leverage is the average energy of these elements. 

We have thus obtained equations for thermal reaction rate and for the 
temperature coefficient of thermal reaction rate entirely analogous to 
those for monomolecular reactions. 

As to the photochemical reaction rate for a polymolecular reaction, we 
cannot make such definite statements as in the case of monomolecular 
reactions. Since we have come to the conclusion that the state of maximum 
statistical probability is maintained by the interaction of radiant energy, 
we are of course forced to the conclusion that all reactions are photo
chemical. If we illuminate a reacting gas with radiation other than that 
corresponding to the temperature of the enclosure, there will certainly be 
some frequencies which will increase the proportion of "activated" mole
cules over the normaLand hence increase the reaction rate. More specific 
statements on this point, however, do not now seem possible. 

7. Conditions at Equilibrium.—If we consider again our expression 
for the mechanism of a chemical change, 

aA + bB + ... = cC + dD + ... (1) 
we may write in accordance with Equation 40, for the temperature coef
ficient of the specific reaction rate in the forward direction 

CL jfl K\ £L\ activated -^ l average / o \ 

dT ~ RT* 

and for the temperature coefficient of the specific reaction rate in the 
reverse reaction 

d In «8 __ E'j activated ^ 2 average / \ 

AT ' RT* 

Ei activated is the energy that enters into the reaction when a mols of A 
combine with b mols of B, etc., and Us activated is the energy that enters 
into the reaction when c mols of C combine with d mols of D, etc. Now 
it is evident that when the concentrations are such that equilibrium is 
maintained, a mols of A will combine with b mols of B, etc., in exactly 
the same time interval that it takes for c mols of C to combine with, d 
mols of E), etc., to reform A, B, etc. Since there will be no transfer of 
energy to or from the system at equilibrium, it is then evident that the 
following equation must be true, 

^l activated -^S activated* VOW 

It is also to be noted that at equilibrium we may write 

K = kx/h (50 
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where K is the equilibrium constant. Combining Equations 48, 49, 50 
and 51, we obtain 

d lnki _ d In h = din K = E2 average -E1 average 

dT AT AT RT* 

It is evident, however, that we may write 

^ - ^ -^2 average ' - ^ l average 

where AE is the internal energy change accompanying the reaction. We 
obtain 

din K __ AE , , 

~W " RT* {53 

and have thus deduced the well known van't Hoff equation from the 
principles of statistical mechanics. This is an important test of the cor
rectness of our development. 

V. Further Developments. 
The foregoing development has been valuable in providing a derivation 

of the Arrhenius equation for the temperature coefficient of reaction rate, 
in providing information as to the relation between thermal reaction rate and 
photochemical reaction rate, in providing an expression for the tempera
ture coefficient of photochemical reactions and generally in leading to 
more specific ideas as to the mechanism of chemical reactions. The work, 
however, has provided no method of predicting the actual magnitude of 
any individual reaction rate, and this must be regarded as the most im
portant task which chemical kinetics must yet solve. 

Some progress towards the solution of the problem is possible in the 
case of polymolecular reactions. Let us consider for example, the di-
molecular reaction 

A + B ~-~> Products. (54) 
Let us now assume that radiant energy, although necessary for the main
tenance of the statistical state of maximum probability, does not enter 
into the actual chemical change involved in the reaction. Then, in ac
cordance with our general Equation 46, we can write for the specific re
action rate of the above chemical change 

h = ff sahe-E^Ta^-E^hTdaAdaB. (55) 
If now we had sufficient knowledge of the quantities involved in Equa
tion 55, it is evident that we could predict the reaction rate. The de
pendent and independent variables in Equation 55 are functionally re
lated, as follows: 

s = s(>A ,ffB) 

aA = OA(T) 

^ A = EA((rA) 
oB = aB(T) 
EB = -EBVB) 
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As to s, it is obvious that 5 is zero when <rA and cB have such values that 
the molecules involved are far apart. We might further assume that 5 
has the value unity (i. e., reaction is sure to occur) when the values of crA 

and erB are such that the molecules have certain minimum energy contents 
and such that they have come into contact in the sense of the kinetic 
theory. Hypotheses of this type have led to useful considerations in 
the hands of Trautz and W. C. M. Lewis.1 Any really satisfying solu
tion of the problem, however, would necessitate much more information 
than we now have as to the nature of the functional relationships of the 
type 

connecting the energy of a molecule with its coordinates and momenta. 
Such information will become available as our knowledge of atomic struc
ture increases, and this is a field where great advances may be expected 
in the near future. As to the functional relationships of the type 
aA — 0A(T) > these can be obtained with the help of Equation 25 as soon 
as the nature of the relationships UA = EA(<rA) is known. 

In conclusion, although the considerations of this paper have dealt 
solely with reactions in dilute gases, the general nature of their extension 
to concentrated gases, non-gaseous systems, and even non-homogeneous 
systems, will be evident even if exact mathematical treatments are not 
now possible. 
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In order that the student beginning quantitative analysis should ac
quire, at the very first, a thorough manipulative knowledge of the bal
ance, it has been our custom, to provide, as a first exercise, the standard
ization of his box of weights. This has proved in the past an excellent 
method of accomplishing the result indicated and in addition he has ob
tained a knowledge of the relative values of his weights. 

During the progress of such a standardization, from the fractional 
denominations to the 50 g. weight, any error, however slight, is multi
plied until at the end a not inconsiderable but factitious correction is ac
cumulated. Richai'ds, in his excellent and well known contribution,2 

has given us a method of redistributing this error according to the rela
tive values of the weights. This method of calculation is now in general 
use. 

1 Loc. tit. 
2 T H I S JOURNAL, 22, 144 (1900). 


